Sebum/Meibum Surface Film Interactions and Phase Transitional Differences
نویسندگان
چکیده
PURPOSE Sebum may contribute to the composition of the tear film lipid layer naturally or as a contaminant artifact from collection. The aims of this study were to determine: if sebum changes the rheology of meibum surface films; if the resonance near 5.2 ppm in the 1H-NMR spectra of sebum is due to squalene (SQ); and if sebum or SQ, a major component of sebum, interacts with human meibum. METHODS Human meibum was collected from the lid margin with a platinum spatula. Human sebum was collected using lipid absorbent tape. Langmuir trough technology was used to measure the rheology of surface films. Infrared spectroscopy was used to measure lipid conformation and phase transitions. We used 1H-NMR to measure composition and confirm the primary structure of SQ. RESULTS The NMR resonance near 5.2 ppm in the spectra of human sebum was from SQ which composed 28 mole percent of sebum. Both sebum and SQ lowered the lipid order of meibum. Sebum expanded meibum films at lower concentrations and condensed meibum films at higher concentrations. Sebum caused meibum to be more stable at higher pressures (greater maximum surface pressure). CONCLUSIONS Physiological levels of sebum would be expected to expand or fluidize meibum making it spread better and be more surface active (qualities beneficial for tear film stability). Sebum would also be expected to stabilize the tear film lipid layer, which may allow it to withstand the high shear pressure of a blink.
منابع مشابه
Surface Properties of Squalene/Meibum Films and NMR Confirmation of Squalene in Tears
Squalene (SQ) possesses a wide range of pharmacological activities (antioxidant, drug carrier, detoxifier, hydrating, emollient) that can be of benefit to the ocular surface. It can come in contact with human meibum (hMGS; the most abundant component of the tear film lipid layer) as an endogenous tear lipid or from exogenous sources as eyelid sebum or pharmaceuticals. The aims of this study wer...
متن کاملSurface Chemistry Interactions of Cationorm with Films by Human Meibum and Tear Film Compounds
Cationorm® (CN) cationic nanoemulsion was demonstrated to enhance tear film (TF) stability in vivo possibly via effects on tear film lipid layer (TFLL). Therefore the interactions of CN with human meibum (MGS) and TFLL in vitro and in vivo deserve special study. MGS and CN were spread at the air/water interface of a Langmuir surface balance to ensure a range of MGS/CN oil phase ratios: 20/1, 10...
متن کاملHuman Meibum Age, Lipid–Lipid Interactions and Lipid Saturation in Meibum from Infants
Tear stability decreases with increasing age and the same signs of instability are exacerbated with dry eye. Meibum lipid compositional changes with age provide insights into the biomolecules responsible for tear film instability. Meibum was collected from 69 normal donors ranging in age from 0.6 to 68 years of age. Infrared spectroscopy was used to measure meibum lipid phase transition paramet...
متن کاملChanges in human meibum lipid composition with age using nuclear magnetic resonance spectroscopy.
PURPOSE Human tear film stability decreases with increasing age. In this study, the changes in meibum composition were measured in search of markers of tear film instability. METHODS (1)H NMR nuclear magnetic resonance (NMR) spectra of 43 normal donors aged 1 to 88 years were acquired. RESULTS Compared with meibum from adolescents and adults, meibum from infants and children contains less C...
متن کاملHuman meibum lipid conformation and thermodynamic changes with meibomian-gland dysfunction.
PURPOSE Instability of the tear film with rapid tear break-up time is a common feature of aqueous-deficient and evaporative dry eye diseases, suggesting that there may be a shared structural abnormality of the tear film that is responsible for the instability. It may be that a change in the normal meibum lipid composition and conformation causes this abnormality. Principle component analyses of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 57 شماره
صفحات -
تاریخ انتشار 2016